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Abstract

This paper presents evidence that several, judiciously placed file caches could reduce the
volume of FTP traffic by 42%, and hence the volume of all NSFNET backbone traffic by 21%.
In addition, if FTP client and server software automatically compressed data, this savings could
increase to 27%. We believe that a hierarchical architecture of whole file caches, modeled after
the existing name server’s caching architecture, could become a valuable part of any internet.

We derived these conclusions by performing trace driven simulations of various file caching
architectures, cache sizes, and replacement policies. We collected the traces of file transfer
traffic employed in our simulations on a network that connects the NSFNET backbone to a
large, regional network. This particular regional network is responsible for about 5 to 6% of
NSFNET traffic.

While this paper’s analysis and discussion focus on caching for FTP file transfer, the proposed
caching architecture applies to caching objects from other internetwork services.



1 Introduction

The Internet’s File Transfer Protocol (FTP
[PR85]) is the source of about half of the bytes
that traverse the NSFNET backbone [Mer92]. Our
previous study showed that many large, essentially
read-only files are popularly FTP’d across the In-
ternet many times each day [EHS92]. Through
trace-driven simulation and measurements of traf-
fic characteristics, this paper demonstrates that
over half of the FTP bytes transmitted over the
backbone could be eliminated. Regional networks
should see similar savings.

The reason that such a hefty bandwidth sav-
ings is possible is simple. FTP has evolved into an
embryonic, distributed file system that is open to
all computers implementing TCP/IP. Unencum-
bered by consistency control, locking, security, or
caching, FTP’s client and server software are tidy
and easily ported. Across wide-area networks and
a multitude of platforms, FTP is now a ubiquitous
global file system. Recently, more advanced facili-
ties have been layered atop FTP, such as primary-
copy replication [McL91] and various directory ser-
vices [ED92, HS93]. Unfortunately, FTP’s simplic-
ity also leads to many inefliciencies and inconsis-
tencies. Since FTP will not soon disappear, we ask
how can it be improved?

1.1 How to Improve FTP Efficiency

From the perspective of a global file system
and a bulk-transfer protocol, FTP lacks server-
independent file naming, whole-file caching, and
automatic file compression. We discuss these three
features below.

1.1.1 Server-Independent Naming

As the global FTP file space evolves, popular
files are hand-copied or automatically mirrored on
many FTP archives. Hand-replication leads to
data inconsistencies that frequently force users to
filter through many different versions of a file. Ex-
cessive mirroring of archived files burdens the user
with choosing a “close” and lightly-loaded archive.
We illustrate this with two examples.

When MIT released the fifth version of the
X-window system (X11R5), they hand-replicated

copies of the distribution directory in 20 different
FTP archives around the world to help distribute
Internet load. People looking for the new distribu-
tion discovered the names of these servers through
electronic mail, news articles, and FTP directory
services like archie. They then hand-selected a
server from which to retrieve the distribution. In
this example, the lack of server-independent nam-
ing means that these identical files have 20 differ-
ent names, one for the server name + file name at
each archive.

The lack of server-independent names, com-
bined with hand-replication, also leads to data in-
consistency. Except for the best managed archives,
most FTP archives contain out-of-date versions of
popular files. For example, archie locates 10 dif-
ferent versions of tcpdump archived at 28 differ-
ent sites, and it locates 20 different versions of
traceroute stored at 88 different sites. Because
the global FTP file system is so desperately incon-
sistent, users frequently retrieve and sort through
several versions of a file before encountering the
right one.

For our purposes, the server-independent name
of a file should include the hostname and full path
name of the primary copy of a file. The actual rep-
resentation could be the naming convention being
developed by the Internet Engineering Task Force
(IETF) [Int93].

1.1.2 Caching Architectures

The performance of all distributed systems de-
pends on caching. If they don’t cache, they
don’t perform well. We propose an architecture
of file caches, accessed via server-independent file
names, that would improve FTP performance,
eliminate the inconsistencies that arise from hand-
replication, and reduce wide-area F'TP traffic.
We propose building a next generation of FTP
clients that, given the server-independent name for
a file, would retrieve it from file caches rather than
from the originating host. The dark ovals in Figure
1 represent file caches residing on secure machines
placed near the entry points to regional networks
and near the core of backbone networks. The or-
ganization of these caches could be similar to the
organization of the Domain Name System. Clients
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Figure 1: File caches organized hierarchically by
network topology.

send their requests to one of their default cache
servers. If the request misses the cache, then the
cache recursively resolves the request with one of
its parent caches or directly from the FTP archive.

Using trace driven simulation, we demon-
strate that simple file caching mechanisms imple-
mented on inexpensive workstations could reduce
NSFNET backbone loads by 21%. We argue that
file caches require changes to neither the defini-
tion of F'TP nor to its existing servers. File caches
and their clients would be layered over the existing
FTP service.

1.1.3 Presentation Layer Issues

Owur traces show that up to 31% of file transfers are
not compressed, and that conservatively speaking,
automatic compression would reduce the volume
of backbone traffic by up to 6%. Hence, from the
perspective of a bulk transfer protocol, we believe
that automatic compression should be added to
the definition of FTP.

1.2 Why save bandwidth now?

We see two reasons for implementing file caching
even as backbone bandwidths blossom.

First, file caches cost a fraction of link up-
grades, and they can be employed at regional net-
works or even at the edge of overloaded, intercon-
tinental links. The volume of Internet FTP traffic
will not soon decrease, and caching at one node
saves bandwidth everywhere. Moreover, as the
Internet becomes commercialized, services other
than FTP could exploit these caches to save trans-
mission costs.

Second, although real-time, multimedia traffic
will eventually contribute a significant portion of
network load, this does not mean that it will dwarf
file transfer traffic. Rather, we believe, it means
that the average size of FTP transfers will con-
tinue to grow, and the fraction of bandwidth due
to FTP will stay significant. As justification for
this, note that F'TP file sizes have grown an or-
der of magnitude from 1989 to 1993 [DJCM91].
Multimedia applications will almost certainly lead
to even more demand for widespread distribution
of audio and video transcripts, further exacerbat-
ing the load caused by file transfers. As Table 6
shows, already 20% of FTP bytes transfer graphics
and video traffic.

1.3 Outline of Paper

In Section 2 we describe our traces of FTP file
transfers collected from the NSFNET backbone.
In Section 3 we report the results of a trace-driven
simulation of a single file cache and a synthetic
workload driven simulation of a network of file
caches. In Section 4 we discuss various practi-
cal implementation problems with file caches. We
contrast our findings with the work of others in
Section 5, and summarize our findings and recom-
mendations in Section 6.

2 Trace Collection

We collected traces of F'TP file transfer traffic from
the Boulder entry point to the NSFNET back-
bone. To be precise, we collected data from the
192.43.244 network inside the National Center for
Atmospheric Research (NCAR). This is the pri-
mary connection from the eastern part of the West-
net regional network (Colorado, New Mexico, and



Wyoming) to the NSFNET backbone (see Fig-
ure 2). It also provides primary NSFNET con-
nections for the University Corporation for At-
mospheric Research (NCAR’s parent organization)
and several Mexican networks (via the University
Satellite Network), as well as secondary NSFNET
connections for the NASA Science Internet and
Los Alamos National Laboratory. This entry
point contributes between 5% and 7% of the bytes
carried by the NSFNET (See file t3-9210.bnss,
[Mer92]). It contributed 6.35% of NSFNET bytes
during the month the traces were collected.

We captured IP packets on a DECStation 5000,
filtered the packets to single out FTP control con-
nections and file transfer connections using a mod-
ified NFSwatch program [CM91], discarded infor-
mation that might compromise the privacy of in-
dividuals, and wrote a trace record for each trans-
ferred file. Table 1 shows a typical trace record.
We recorded only IP network numbers rather than
full IP addresses, to preserve individual privacy. A
file’s IP source address is the network address of
the machine that provided the file; the IP destina-
tion address is the network address of the machine
that read the file. Note that these two definitions
are independent of whether the FTP client issued
a put or get command.

File Masked Masked ‘Time File File
Name IP Source IP Dest Stamp Size Signature
Address Address
sigcomm.ps.Z 128.138.0.0 18.0.0.0 10/8/92 12,345 abc...
03:45:15 LXy2Z

Table 1: Fields of a trace record.

The signature field consists of between twenty
and thirty-two bytes uniformly sampled from a
file.! We used the file size plus signature to identify
that files on different hosts are probably identical.
We say “probably identical” because, to preserve
privacy and keep the trace storage requirements
reasonable, we only stored a file’s length and sig-
nature, rather than its entire contents. If two files’
lengths and signatures matched we said they were
the same file. Even if they had the same name,

!We attempted to collect thirty-two bytes, but accepted
as few as twenty bytes to make signature collection more
resilient to packet loss.

Quantity Value
Trace dates 9/29/92 - 10/8/92
Trace duration 8.5 days
IP Packets captured 4.79 -108
FTP packets 1.65 108
Peak IP packets/second 2,691
Interface drop rate 0.32 %
FTP connections (port 21) 85,323

Avg connection time 209 seconds
Avg transfers per connection 1.81

Actionless connections 42.9%
“dir”-only connections 7.7%
Traced file transfers 134,453
File sizes guessed 25,973
Dropped file transfers 20,267
Fraction PUTs 17.0%
Fraction GETs 83.0%

Table 2: Summary of traces.

if their lengths or signatures differed we said the
files were different. We use this knowledge in sec-

tion 3 when evaluating the impact of file caching
on NSFNET load.

2.1 Summary of Traces

Table 2 summarizes key features of the traces. We
captured 134,453 separate file transfers in 8 days of
tracing; we failed to capture another 20,267 trans-
fers for reasons discussed below. Since 85,323 dif-
ferent FTP control connections transferred these
134,453 + 20,267 files, on average, FTP clients
transferred 1.81 files per connection. 42.9% of all
connections resulted in no actions, probably indi-
cating mistyped passwords. Amnother 7.7% of all
connections listed directories but did not transfer
files, indicating users searching for information or
automated directory retrievals being performed by
systems like archie.

Table 3 below records other details about the
files transferred. “Files” refers to unique files,
while “transfers” includes multiple transmissions
of individual files. From this table we see that the
mean transfer size is significantly larger than the
median transfer size. Small files are transferred
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Figure 2: NSFNET backbone topology at time of data collection.

Mean file size (bytes) 164,147
Mean transfer size (bytes) 167,765
Median file size (bytes) 36,196
Median transfer size (bytes) 59,612
Mean file size for dupl. transfers 157,339
Median file size for dupl. transfers 53,687
‘Total bytes transferred in trace 25.6 GB
Files transferred > once/day 3%
Bytes due to these files 32%

Table 3: Summary of transfers.

more often than large files, but some very large
files do get transferred (in agreement with our and
other studies of Internet traffic [DJC192]). The
table also shows that the relatively few files that
are frequently transferred account for a large per-
centage of the volume.

2.1.1 Estimating Packet Loss Rate

We estimated the trace’s packet loss rate by count-
ing the number of missing signature bytes for file
transfers whose signatures came from 32 different
packets. The signature bytes of transfers equal
to or larger than 32 network Maximum Transfer
Units (MTUs) come from different packets. Since
previous studies [DJC*92, WLC92] have shown
that most FTP data connections employ a 512 byte
TCP segment size, we approximated that the sig-
nature bytes of transfers greater than 512*32 bytes
long came from different packets. For each suffi-
ciently long transfer, we found the highest num-
bered, successfully recorded signature byte. Since
any signature byte lower than the highest valid
byte must have been transmitted, any missing sig-
nature bytes lower than this byte must have been
dropped. Ignoring the effects of retransmissions
due to flow control, we estimated a loss rate of
0.32 percent.



Reason for Loss

Unknown but short transfer size 36%
Stated file size wrong or transfer aborted 32%
Transfer too short (< 20 bytes) 31%
Packet Loss <1%
Mean dropped file size 151,236
Median dropped file size 329

Table 4: Summary of lost transfers.

2.1.2 Lost Transfers

Table 4 focuses on the 20,267 transfers that we
detected but failed to capture because we could
not construct a complete signature. These losses
occurred for four reasons. First, when an TP
server failed to transmit the size of the file before
commencing the data transfer, we computed the
signature assuming the file was 10,000 bytes long.
Thus, we could not compute a signature for size-
less transfers shorter than (20/32)*10,000 bytes.
The factor of 20/32 comes from the fact that we
considered a signature valid if we managed to col-
lect 20 of the 32 possible bytes. Second, some
FTP servers stated incorrect transfer lengths, or
the transfer was aborted by one side or the other.
Third, we discarded all transfers of 20 bytes or less
because our software insisted on collecting a mini-
mum signature length of 20 bytes. Finally, packet
loss prevented us from collecting some signatures,
but this was rare.

Although we discarded a substantial number
of transfers, most were small files (note that the
mean dropped file size was much larger than the
median in Table 4). Hence these discarded files do
not significantly affect the benefits of file caching
discussed below.

2.2 FTP’s Missing Presentation Layer

As typically implemented, FTP acts as a session
layer protocol — any presentation layer transforma-
tion, such as encryption, compression, and data
representation mappings, must be performed out-
side of FTP. We identify two situations where net-
work traffic could be saved by placing these trans-

Extension Compression Format
*.z UNIX

.arj *.1zh *.zip *.zoo PC

Fhax Macintosh

gif* * jpeg* *.jpg Image

Bytes transferred 25.6 GB
Uncompressed bytes 8.7 GB

Fraction uncompressed 31%
Fraction wasted traffic 6.2%

Table 5: File naming conventions used to detect
compression.

formations, and the decisions about when to apply
them, inside FTP.

First, rather than depending on users to do
it, FTP could compress data on-the-fly. Unfortu-
nately, we could not directly measure the bene-
fits of compression because, to maintain privacy,
we discarded FTP data. Fortunately, filenames
frequently convey their data format, and, in this
manner, we estimate that only 69% of FTP bytes
were transmitted compressed, and many of these
bytes were in a 7-bit format that could be fur-
ther compressed. Table 3 lists the compressed for-
mats we recognized. Assuming FTP implemented
Lempel-Ziv compression [Wel84], the most com-
mon compressjon algorithm, and conservatively es-
timating that the average compressed file is 60%
the size of the original, then automatic compres-
sion would eliminate 40% of 31% of the FTP bytes
transmitted, or 12.4% of FTP bytes. Again, as-
suming that half of NSFNET bandwidth is FTP
transfers, NSFNET backbone traffic would be re-
duced by 6.2%.

Second, most FTP clients and servers attempt
to translate data into and out of an 8 bit ASCII
“network standard” representation as a default.
To transfer a file without this conversion, the user
must precede the file transfer request with a com-
mand telling FTP to turn off data conversion.
While some clients and servers automatically rec-
ognize such binary transfers and disable conver-
sion, others do not. A common mistake is to trans-
fer binary data without first disabling conversion.



When this happens, the transfer is garbled and is
usually retransmitted.

To estimate the amount of bandwidth wasted
by this problem, we counted the number of file
transfers for which files with the same name and
length but two different signatures were transmit-
ted between the same source and destination net-
work within 60 minutes of each other. We found
that 1,370 (2.2%) of the 63,109 files transferred in
our trace experienced this problem, causing a to-
tal of 278 MB to be transmitted. Because this is
1.1% of the total bytes transmitted, and again as-
suming that half of NSFNET bandwidth is FTP
transfers, this problem accounts for only about .5%
of NSFNET backbone traffic.

3 File Caching

This section evaluates the reduction in NSFNET
traffic achievable by various file caching architec-
tures, cache sizes, and replacement policies. We
obtained these measures by driving simulations
with our NCAR traces. We focus on the NSFNET
backbone because we know its topology (see Fig-
ure 2) and global traffic statistics [Mer92]. We ex-
cluded regional and local networks from the mea-
sures presented here by substituting NSFNET en-
try points, or External Nodal Switching Subsystem
(ENSS), for each IP address found in the traces.
This eliminated our measure’s sensitivity to par-
ticular regional and local topologies.

While we ignored regional and local topology in
our measures, we believe that demonstrating band-
width savings on the backbone illustrates the mag-
nitude of the possible savings on these networks.
We could have applied this same entry point sub-
stitution technique to model the impact of caching
on stub networks, regional networks, or intercon-
tinental links.

We measured bandwidth savings in units of
byte-hops. For each traced file transfer, we cal-
culated the actual backbone route over which the
data traveled, computed the route’s hop count,
and multiplied the hop count by the file size. This
measure reflects the resources consumed by a given
file transfer. We summed this number for all of the
transfers to compute the total savings. In the sim-

ulations below, we report both the cache hit rate
and the percentage drop in backbone traffic after
file caching. We used actual NSFNET routes in
the simulation so that routes would correspond to
realistic networks.

We accounted for cold start caching effects by
driving each cache with the first 40 hours of traces
before accumulating hit rate and bandwidth re-
duction measurements.

In the simulation models we did not include the
cost of locating cached copies of data, because as
files continue to increase in size, location costs be-
come comparatively insignificant. A lookup could
be done with a small number of RPCs, similar to
how Internet host names are resolved by a small
number of RPCs in the Domain Naming System.

Throughout this section, when we speak of
placing a cache at an NSFNET switch, we refer to
tapping a cache into the adjacent network. Clearly,
it would be unwise to burden backbone routers
themselves with the additional computational ex-
pense of maintaining file caches.

3.1 External Nodes Caches

We begin by evaluating the reduction in NSFNET
backbone traffic achievable by placing file caches
at the network’s ENSS’s. With these caches, if a
user in Atlanta retrieved a file from the University
of Colorado, the file would end up in the Atlanta
ENSS’s file cache.

Because we only consider the effects of caching
on the backbone, caches can only save byte-hops
for the portion of file transfers that traverse the
backbone. For example, it would not make sense to
cache a University of Colorado-sourced file at the
NCAR ENSS if the file were destined for Atlanta,
because our model treats the network as having
no hops between the University of Colorado and
NCAR. Therefore, the policy for an ENSS cache
should be to cache only those files whose desti-
nations are on the local side of the cache. Be-
cause of this policy, it also makes no sense to sim-
ulate caches at any other ENSS besides the local
one using our trace stream, since those caches will
never cache files from the local reference stream.
Instead, we compute potential cache savings at a
single ENSS.
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Figure 3: Bandwidth reduction for locally gener-
ated traffic from external node caching.

Figure 3 shows the fraction of locally destined
bytes that hit the cache and the byte-hop reduc-
tion as a function of cache size for a single cache
placed at the NCAR ENSS. We simulated 2 GB,
4 GB, and infinite cache sizes. As can be seen, a 4
GB cache achieves nearly optimal savings.

Note that while 4 GB is a significant propor-
tion of the total traffic from our traces (Table 3), a
steady state hit rate was reached after only 2.4 GB
had been passed through the cache. This number
represents the working set size of (Westnet) popu-
lar FTP files.

Duplicate transmissions tend to occur within a
small time window of one another. For example,
as Figure 4 illustrates, the probability of seeing the
same duplicate-transmitted file within 48 hours is
nearly 90%. For this reason, Least Recently Used
(LRU) and Least Frequently Used (LFU) replace-
ment policies are nearly indistinguishable. LFU’s
slightly better performance for smaller caches in-
dicated in Figure 3 can be explained by the fact
that approximately half of the references are un-
repeated. Hence, any file transmission that has
been repeated once is more likely to be repeated
many times than a completely new reference. As
the cache gets large, the difference between poli-
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Figure 4: Cumulative interarrival time distribu-
tion for duplicate transmissions.

cies becomes insignificant. Because of this, we only
simulated one policy (LFU) for the remainder of
our experiments.

Our measurements indicate that most files are
transferred to three or fewer destination networks,
but a small set of highly popular files were dupli-
cate transmitted to hundreds of destination net-
works. This argues for using multiple caches. As-
suming that our traces are representative, if we
placed a file cache at each ENSS, then Figure 3
reflects the drop in total NSFNET FTP traffic
that would be achieved. Because FTP accounts
for about 50% of all NSFNET backbone traffic,
this means caching could reduce NSFNET load by
21%.

Below, we evaluate an alternative architecture
that employs fewer caches: placing caches inside
the backbone network. In the NSFNET, these
are called Core Nodal Switching Subsystems or

CNSS’s.

3.2 Core Node Caches

Because core nodes experience significantly more
traffic than peripheral nodes do, it may be possible
to place caches at just the most highly traversed
core nodes and approach the savings of many more
caches at peripheral nodes. Note that unlike the
caching policy at ENSS’s, transfers for all sources
and destinations are eligible for caching at CNSS
caches.

It is not obvious how well core caching would
work. Core caches will experience a broader col-
lection of file references, so the working set may
be much larger. Moreover, fewer hops would be



saved by these caches, since several hops beyond
the periphery are needed to reach these caches.

Because we collected data at only one point
in the NSFNET, we evaluated the effect of CNSS
caches using a synthetic workload constructed as
follows. We began with the subset of transfers with
destinations on the local side of the data collection
point (NCAR). We excluded transfers with remote
destinations (and local sources) because these only
represent Westnet’s sliver of the global FTP file
data. In contrast, those traces with local desti-
nations represent the retrieval patterns of a large
population (Westnet) against files found around
the global Internet.

Next, we created an artificial workload model
consisting of a random generator of file references.
These references were composed of a set of globally
popular files (those locally destined files transmit-
ted multiple times in the NCAR traces) and a set
of globally unique files (those transmitted once in
our traces). References to these unique files were
created so that they always miss the cache. Note
that this parameterization assumes that the ratio
of popular to unique files is the same at each ENSS,
and that each ENSS requests the same globally
popular set of files in the same relative propor-
tions as seen in the NCAR traces. Each popular
file is generated with the probability encountered
in the trace.

The simulation proceeds in lock step. At ev-
ery step, each ENSS calls the generator and re-
trieves the specified file. We modeled the varia-
tion in traffic level generated by each ENSS by
scaling the number of file transfers by the relative
counts of traffic reported by Merit, Inc. (see file
t3-9210.bnss, [Mer92]).

We chose where to place CNSS caches by order-
ing the CNSS’s according to which node would pre-
vent the most downstream byte-hops for the given
synthetic workload. This corresponds to how one
would engineer a caching network by first mea-
suring FTP packet counts at each CNSS over a
long period of time. Note that a “perfect” rank-
ing algorithm would require running simulations
for one CNSS at a time, and chosing the one that
improved caching the most, then for 2 CNSS’s at
a time, etc. We chose instead to use the following
approximate ranking algorithm, which could differ

from the perfect algorithm because of interference
between the caches:

Let current graph = backbone route
graph;
Fori =1 to NumCaches do

Determine the CNSS
for WhiCh Z\/transfers
[bytes - (hops remain-
ing to destination)] is
maximal, using the
current graph;

Assign this CNSS rank i;

- Remove this CNSS from
the current graph and
deduct its outgoing
flows to the adjacent
nodes;

end

Figure 5 shows the effects of placing caches at
the top 1 through 8 CNSS’s, with a range of cache
sizes. The hit rates and global byte-hops savings
for an individual CNSS cache are less than the
corresponding savings of a single ENSS cache, be-
cause it takes at least one additional hop to reach a
CNSS. However, achieving a global savings equiv-
alent to the savings in local traffic from one ENSS
cache would require placing caches at all ENSS
caches. Therefore, the lower savings at the CNSS
caches should be interpreted in the context of lower
overall costs for purchasing fewer caches. In partic-
ular, our traces detected 35 different ENSS’s (each
of which would need a cache), yet placing caches
at just 8 CNSS’s would accomplish 77% as much
good, at one quarter the cost.

We caution against drawing strong conclusions
about exact hit rates or cache placement choices
based on this synthetic workload. Rather, our
point is to indicate that even with a significant
amount of non-duplicated traffic (the synthetic
workload passed unique files totaling 74 GB of
data through the CNSS caches), core node caching
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Figure 5: Bandwidth reduction due to core node
caching.

o

can reach a steady state working set with moder-
ate sized caches, and significantly reduce backbone
traffic.

The next section describes a hierarchical archi-
tecture in which caches fault data across the net-
work from other caches, rather than retrieving it
from the orginal source. We did not simulate this
architecture because FTP files that are transmit-
ted more than once tend to be transmitted many
times (see Figure 6). Faulting from cache to cache
would only save transmission costs the first time
the file is retrieved. After that point, the files
would be in the cache, for the vast majority of
the savings. Hence, we are not sure that the com-
plexity of cache-to-cache coordination is justified
in the case of FTP files.

4 Practical Matters

We now consider how to make object caching as
practically appealing as it is theoretically appeal-
ing. This section addresses issues of cache ma-
chine performance, cache consistency, how to lo-
cate caches, and the privacy and security of fetch-
ing objects from caches. We intentionally refer
to objects rather than FTP files, because services
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Figure 6: Distribution of repeat transfer counts
for duplicate file transmissions .

other than FTP (such as WAIS [KM91}) could em-
ploy these caches via universal resource locators
[Int93].

4,1 Cache Machine Load

We believe that well designed object caches can
keep up with demand rather than becoming perfor-
mance bottlenecks. They can optimize their per-
formance by exploiting FTP’s sequential access.
Upon access, they can prefetch objects from disk
to memory, and employ a healthy file system block
size to make prefetches efficient. Flow control and
network round trip time will combine to elimi-
nate disk performance as a major performance fac-
tor for caching. Hence, we believe that object
cache performance will depend on raw processor
speed. As several researchers have demonstrated
100-megabit TCP/IP bandwidths on current pro-
cessors, we believe that a single cache processor at
an ENSS can be designed to meet current demand,
and scale to meet future demand.

4.2 Consistency

We argued that caching improves object consis-
tency by reducing the need to replicate archived
objects, but how should we keep caches consistent?
We suggest using a hybrid approach of time-to-live
caching, modeled after the Domain Name System
(DNS), and version checking. Upon faulting an
object into a cache, the cache assigns it a time-to-
live. If the cache faulted the object from another
cache, it copies the other cache’s time-to-live. If
a referenced, cache-resident object’s time-to-live is



expired, the cache must first connect to the ob-
ject’s source host and either fetch a fresh copy of
the object or confirm that it has not been modi-
fied. A user’s client should, optionally, be able to
retrieve the object directly from its source.

4.3 Topology

Caches must choose whether to retrieve an ob-
ject directly from the object’s source or via an-
other cache. For concreteness of discussion, we
assume that caches are placed at most regional
networks where they meet the NSFNET backbone
and at most stub networks where they meet their
regional. We propose that clients find their stub
network cache through the Domain Name System
and apply the simple rule that, if the source is not
on the same network as the client, they issue the
request through the stub cache.

Stub caches, like clients themselves, must
choose whether to retrieve an object directly or
from a regional or stub cache. One possible so-
lution would be to query the DNS for the stub
cache of the object’s source and then query this
cache for its regional cache. Given this informa-
tion, many different cache location policies could
be implemented.

4.4 Privacy and Security

This paper has implicitly assumed that object
caches, like networks and name servers, are man-
aged by trusted agencies. However, people con-
cerned that caching could make their private ob-
jects visible to the rest of the network simply
need not retrieve their objects through the caches.
Moreover, digital signatures could be used to seal
data, to guard against cached copies being modi-
fied without their approval.

5 Related Work

This paper deals both with the traflic character-
ization of the Internet and, to some extent, with
caching for distributed file systems. It is closely
related to a study by Maffeis [Maf93] and to the
Alex file system [Cat92].
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Maffeis [Maf93] analyzed the log files of 25 FTP
archives. He reported the degree of read-sharing
and touched on the update rate of files in FTP
archives. He reported that certain files, primarily
“Is-1IR” and “README” files, are frequently up-
dated and that the number of files in FTP archives
tend to grow by 3% a month. However, he did not
give sufficient detail to help evaluate cache consis-
tency policies. He suggested that object caching
would improve availability and performance, but
did not suggest an architecture or evaluate the im-
pact of caching on network load.

A type of file cache for anonymous FTP already
exists. Alex [Cat92] is a recently developed system
that wraps a Network File System (NFS) inter-
face around the space of anonymous FTP archives.
One uses Alex by mounting the Alex server as an
NF'S volume. The Alex server, in turn, translates
name requests to F'T'P operations, caching recently
retrieved files. The Alex server disk cache fills up
with popular items. Note that Alex is not a dis-
tributed architecture, and its dependence on NFS
makes it less portable than other new Internet ser-
vices. Although its impact on network traffic has
not been evaluated, this could be substantial if
Alex servers were placed at ENSS’s and were in
common use.

The Australian archive server archie.au imple-
ments a file cache based on the Prospero file system
[Neu92]. Australian users retrieve files through
this server to amortize bandwidth on the Aus-
tralian long-haul links. Unfortunately, if people
outside of Australia access this archive, files not in
the cache can be transferred across the link twice:
once to fill the cache and once to deliver it to the
requester.

5.1 File System Caches

Studies of caching for general purpose, distributed
file systems have evaluated various file caching
architectures, although all of these studies were
driven by traces of local-area network, file system
traffic rather than wide-area network, FTP archive
traflic.

Both the Sprite and Andrew operating system
projects [NWO88, HKM*88] optimized their file

systems for caching of read-shared files, such as



program binaries. They both reported little write
sharing between workstations, although they took
different approaches to write-shared files.

Muntz and Honeyman [MH92] and Blaze and
Alonso [AB92] simulated multi-level caching archi-
tectures driven by traces taken from over a hun-
dred workstations running the Andrew File System
at DEC’s Systems Research Center. While Muntz
and Honeyman found “disappointingly low” hit
rates, Blaze and Alonso reported that caching
could reduce file server traffic by a factor of two
or more, and thought that a hierarchical set of
caches could reduce load by an order of magnitude.
Blaze and Alonso performed this study in light of
the consistency advantages of caching rather than
replicating data across hundreds of thousands of
computers. It is encouraging to note that their
study, based on local-area traces, and our study,
based on wide-area traces, reach similar conclu-
sions.

5.2 Internet Traffic Characterization

A number of recent studies have monitored wide-
area networks to characterize IP, TCP, and appli-
cation traffic. Measurement studies of IP packet
statistics have documented the growth in traf-
fic volume and troubles with existing protocols
[BCCP93]. Another series of studies focused
on models of Internet traffic [DJCt92, Hei90,
WLC92, Pax91]. Mukjerjee [Muk92] conducted
“ping” experiments to study the dynamics of net-
work congestion and round trip times. We traced
Domain Name System traffic and showed that 3%
of NSFNET bytes are due to defective implemen-
tations of the DNS [DOK92]. NSF measures and
reports monthly traffic statistics of the NSFNET
backbone and maintains an extensive FTP archive
of packet counts, link loads, and packet delay mea-
surements [Mer92].

6 Conclusions

This paper presented evidence that a hierarchical
file caching mechanism layered atop FTP would
eliminate 21% of the traffic that currently traverses
the NSFNET backbone and our regional networks.
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Simultaneously, these caches would lead to im-
proved consistency of FTP archives. We also es-
timated that automatic compression could reduce
backbone traffic volume by another 6%.2

While we collected data from only a sin-
gle regional network and grant that additional
data could make the predicted savings due to file
caching go up or down a little, we believe our sim-
ulations. A separate analysis of two weeks of Uni-
versity of Colorado FTP traffic shows a similar de-
gree of savings [EHS92].

While it could be argued that the volume of file
exchange traffic will pale compared to upcoming
audio and video traffic, we note that people will
undoubtedly FTP recordings of video and audio
conferences. This means that the size of shared
files will continue to grow as the volume of mul-
timedia traffic increases. Hence, bulk transfer of
shared objects will remain an important contribu-
tor to network utilization.

More generally, we believe file transfer will con-
tinue to be an important support mechanism even
as new network services are introduced. As evi-
dence, we note that although many new Internet
services have been introduced and traffic has been
growing exponentially in the past few years, the
proportion of packets and bytes caused by FTP
have fluctuated by only a few percent, averaging
about 25% and 48[Mer92]. Table 6 shows that
FTP is already used extensively for distributing
data for new types of services, such as video and
audio.

Finally, file caching is cost effective. For the
price of some inexpensive caching machines we
could eliminate a fifth of NSFNET traffic, or a
similar amount of traffic on a regional network.
For example, one could purchase a caching ma-
chine for $5,500, as compared with paying $1,500
monthly for an additional T1 regional link.

For these reasons we believe an architecture of
anonymous object caches, accessed by “universal
resource locators” [Int93], would be useful to ser-

“ vices other than FTP. We hope to deploy a proto-

type of such a caching architecture.

2 Adding compression to NNTP[KL86] and SMTP[Pos82]
could reduce backbone traffic by another 6%.



Appendix: Traffic By File Typé

Table 6 lists common file types by percentage of
bandwidth used, based on an analysis of file names.
This analysis is interesting, as it indicates the
types of applications and users that make up the
bulk of FTP traffic.

We constructed this table by first stripping off
file naming suffixes (such as “.Z”) that concern
presentation transformations (such as compres-
sion, ASCII encoding, etc.). We then separated
the file names into conceptual categories, based on
approximately 250 different common naming con-
ventions (such as .jpeg to indicate the Joint Pho-
tographic Experts Group graphical image format).
We did so iteratively, until no large transfers for
files that we could identify remained.
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